Liquid Crystal Displays

Liquid crystal displays are used everywhere, from the simple digital watch that kids these days probably don’t even know about to the screen you are likely reading this from! But how do they work? First, let’s start by comparing them with their predecessor: cathode ray tubes. In the old days, television sets used cathode ray tubes that would spit out electrons that would deflect and produce patterns of light on the screen to produce images. If the kids these days don’t have digital watches, then they certainly won’t remember how these bulky TVs used to work, or even old computer monitors, so I have included an image below.

Why you pay to recycle your old TV or monitor, and why it's worth it
Cathode Ray Tube Computer Monitor

Come to think of it, many of the lab equipment we use in our lab uses cathode ray tubes. Ah, the simpler times of the 90s!

So how can LCD displays bypass this monstrous use of space? Well, LCD stands for “Liquid Crystal Display”, which gives away the secret element to how these displays can work. Liquid crystals were first discovered in 1888 by Friedrich Reintzer when he noted that this strange substance (he was working with cholesteryl benzoate) seemly had both the properties of a liquid and a solid. Now, the really interesting thing about this material is that in the presence of a voltage (or an electric field, since an electric field is just a voltage/meter), the crystals that may ordinarily be ordered parallel to the voltage become aligned horizontally. Since these crystals have a needlelike shape, the optical properties are then affected by the direction of the crystals with respect to light that may be propagating in the material. This is shown in the figure below.

Controllable liquid crystal defect arrays induced by an in-plane electric  field and their lithographic applications - Journal of Materials Chemistry  C (RSC Publishing)

Now how does this work for an LCD? We will first take the simple example of a black and “white” LCD screen, like the one below.

What is really happening here is that we have a liquid crystal “cell” between two crossed linear polarizers followed by a reflecting mirror. The light that causes the display to light up is just ambient light! We can look at the following image to see how this works.

Introduction to Liquid Crystals

In our example of the watch, the “unpolarized light” is just natural light, which is unpolarized because it does not have a defined polarization direction. Then it will pass through one polarizer that only lets through the small amount of light that is polarized along the polarization axis of the polarizer (this polarizer is also known as a dichroic crystal, which is covered in another post here). This is shown as the top blue plane in the image above. Next, the light will pass through the nematic cell, which without the presence of a voltage (shown on the left) will turn the light by 90$^\circ$, as shown by the propagation of the green ellipses in the figure above. The second analyzer in the blue plane will then let this light pass through since it is aligned to its axis, and we have light propagating through! With a mirror at the end (not shown), light propagating back through will just emerge the same way it propagated in. Now, in the presence of a voltage, then we have the situation on the right in the figure above where no light is propagated through the second polarizer (analyzer). This is where we get the black portions of the watch screen above: the dark blocks on the screen correspond to where the light was blocked! The other, brighter parts are not connected to the same block, so they do not see any voltage change and can thus propagate back on through unaffected.

Now how does this work for colored light? Since in order to view this website you have to be looking at a screen, see if you can tilt it to an angle where you can see tiny “blocks” sectioning off your screen. Or, if you have ever accidentally cracked your computer/phone screen (not speaking from personal experience here, of course…), you may have noticed the small blocks that appear near the crack. These little blocks compose 3 small LCDs with red, green, and blue filters on them that, with careful control of the voltage applied, can be subtlety changed to form a total of 256 shades.

Voila! LCDs! Hope everyone has a good appreciation for all of those tiny LCDs working so hard for us now!

Published by lacoop01

I am a current graduate student at the University of Michigan, working on a PhD program in the Electrical Engineering department. My research is focused on coherent pulse stacking in fiber lasers i.e. I love lasers! Hopefully you can find something here that is useful to you.

Leave a Reply

%d bloggers like this: